Zoeken...

Nederlands

English

Login exposanten

10-11 september 2025

Voor bezoekers

Over deze editie

Over Data Expo

Exposantenlijst

Programma

New

Sprekers

Premium tickets

Over vorige edities

Recap

2024

Beursmagazine

2024

Praktische informatie

Plattegrond

Locatie & Openingstijden

Connect App

Samenwerkingen

Partners

Kennispartners

Klankbordgroep

Claim nu je gratis ticket

Kom naar Data Expo en maak jouw datadoelen waar.

Exposant worden

Deelnemen aan de beurs

Exposant worden

Deelnamemogelijkheden

Partner worden

Lezing geven

Stand reserveren

Testimonials

Praktische informatie

Bezoekersprofiel

Contact de specialisten

Brochure aanvragen

Alle informatie over exposeren in één document.

Programma

Over deze editie

Programma

Sprekers

Lezing geven

Testimonial sprekers

Exposantenlijst Blog & Kennis

Ontdek

Blog

Whitepaper & e-books

Uitgelicht

Data & AI Monitor 2025

2025 markeert de start van een nieuwe fase in AI-adoptie.

6 Must-haves bij data governance

Interview: ‘Grote AI-dromen verwezenlijk je in kleine stapjes’

Contact Gratis ticket
10-11 september 2025 | Jaarbeurs Utrecht Gratis ticket Voor bezoekers

Voor bezoekers

Over deze editie

Over Data Expo

Exposantenlijst

Programma

New

Sprekers

Premium tickets

Over vorige edities

Recap

2024

Beursmagazine

2024

Praktische informatie

Plattegrond

Locatie & Openingstijden

Connect App

Samenwerkingen

Partners

Kennispartners

Klankbordgroep

Claim nu je gratis ticket

Kom naar Data Expo en maak jouw datadoelen waar.

Exposant worden

Exposant worden

Deelnemen aan de beurs

Exposant worden

Deelnamemogelijkheden

Partner worden

Lezing geven

Stand reserveren

Testimonials

Praktische informatie

Bezoekersprofiel

Contact de specialisten

Brochure aanvragen

Alle informatie over exposeren in één document.

Programma

Programma

Over deze editie

Programma

Sprekers

Lezing geven

Testimonial sprekers

Exposantenlijst Blog & Kennis

Blog & Kennis

Ontdek

Blog

Whitepaper & e-books

Uitgelicht

Data & AI Monitor 2025

2025 markeert de start van een nieuwe fase in AI-adoptie.

6 Must-haves bij data governance

Interview: ‘Grote AI-dromen verwezenlijk je in kleine stapjes’

Contact

Nederlands

Selecteer taal

English

Login exposanten

Gratis ticket
Big Data Expo Vorm F (1) Big Data Expo Vorm C (1)

Automated insights: uncovering insights from customer data with the use of OpenAI.

Donderdag 10:45 - 11:15
Lezingenzaal 4
Nelly Dua

AI Data Scientist

Meer over deze spreker

Our team has been focused on the development and optimization of the ABN AMRO customer service chatbot, Anna, which is engineered to provide clients with prompt and precise information, ensuring an efficient user experience.

To quantitatively assess user interactions with Chatbot Anna, we utilize endpoint analysis. This involves analysing conversational data to pinpoint 'natural' endpoints, such as queries about usefulness or requests for human handover. At the Objective and Key Results (OKR) level, we classify these endpoints into resolved, unresolved, handover, and unknown categories. Our analysis places particular emphasis on the 'unknown' category, where the conversational data lacks clarity regarding the interaction outcome.

With advancements in large language models, we investigated it's potential to extract insights from the 'unknown' category. By analysing this data, we aimed to obtain a comprehensive understanding of Chatbot Anna's performance and to discern patterns that contribute to unproductive interactions. Identifying non-constructive conversational elements enables us to perform more accurate analyses and enhance the chatbot's functionality. This approach also minimizes the necessity for manual conversation labelling. To accomplish this, we implemented a semi-supervised learning strategy and leveraged few-shot learning techniques to fine-tune our OpenAI model. This initiative led to the discovery of valuable insights that could be advantageous for other technical teams within or outside our organization.

In this presentation, we will share this journey, and the insights gained from this endeavour. We believe that our results will deepen our understanding of user interactions and foster future technological innovations within our team.

Irin Otto

AI Data Scientist

Meer over deze spreker

Our team has been focused on the development and optimization of the ABN AMRO customer service chatbot, Anna, which is engineered to provide clients with prompt and precise information, ensuring an efficient user experience.

To quantitatively assess user interactions with Chatbot Anna, we utilize endpoint analysis. This involves analysing conversational data to pinpoint 'natural' endpoints, such as queries about usefulness or requests for human handover. At the Objective and Key Results (OKR) level, we classify these endpoints into resolved, unresolved, handover, and unknown categories. Our analysis places particular emphasis on the 'unknown' category, where the conversational data lacks clarity regarding the interaction outcome.

With advancements in large language models, we investigated it's potential to extract insights from the 'unknown' category. By analysing this data, we aimed to obtain a comprehensive understanding of Chatbot Anna's performance and to discern patterns that contribute to unproductive interactions. Identifying non-constructive conversational elements enables us to perform more accurate analyses and enhance the chatbot's functionality. This approach also minimizes the necessity for manual conversation labelling. To accomplish this, we implemented a semi-supervised learning strategy and leveraged few-shot learning techniques to fine-tune our OpenAI model. This initiative led to the discovery of valuable insights that could be advantageous for other technical teams within or outside our organization.

In this presentation, we will share this journey, and the insights gained from this endeavour. We believe that our results will deepen our understanding of user interactions and foster future technological innovations within our team.

Our team has been focused on the development and optimization of the ABN AMRO customer service chatbot, Anna, which is engineered to provide clients with prompt and precise information, ensuring an efficient user experience.

To quantitatively assess user interactions with Chatbot Anna, we utilize endpoint analysis. This involves analysing conversational data to pinpoint 'natural' endpoints, such as queries about usefulness or requests for human handover. At the Objective and Key Results (OKR) level, we classify these endpoints into resolved, unresolved, handover, and unknown categories. Our analysis places particular emphasis on the 'unknown' category, where the conversational data lacks clarity regarding the interaction outcome.

With advancements in large language models, we investigated it's potential to extract insights from the 'unknown' category. By analysing this data, we aimed to obtain a comprehensive understanding of Chatbot Anna's performance and to discern patterns that contribute to unproductive interactions. Identifying non-constructive conversational elements enables us to perform more accurate analyses and enhance the chatbot's functionality. This approach also minimizes the necessity for manual conversation labelling. To accomplish this, we implemented a semi-supervised learning strategy and leveraged few-shot learning techniques to fine-tune our OpenAI model. This initiative led to the discovery of valuable insights that could be advantageous for other technical teams within or outside our organization.

In this presentation, we will share this journey, and the insights gained from this endeavour. We believe that our results will deepen our understanding of user interactions and foster future technological innovations within our team.

Terug naar het overzicht

Geïnteresseerd in deze lezing?

Meld je nu gratis aan voor Data Expo en beleef twee dagen vol inspiratie, praktijkinzichten en vernieuwende datatoepassingen. Ontdek wat data voor jóúw organisatie kan betekenen!
Free ticket