Zoeken...

Nederlands

English

Login exposanten

10-11 september 2025

Voor bezoekers

Over deze editie

Recap 2024

New

Exposantenlijst

2024

Programma

2024

Sprekers

2024

Beursmagazine

2024

Partners

Praktische informatie

Plattegrond

Locatie & Openingstijden

Connect App

Hou mij op de hoogte

Ontvang de laatste informatie over Data Expo

Exposant worden

Deelnemen aan de beurs

Exposant worden

Deelnamemogelijkheden

Partner worden

Lezing geven

Stand reserveren

Praktische informatie

Bezoekersprofiel

Contact de specialisten

Brochure aanvragen

Alle informatie over exposeren in één document.

Sprekers

Over deze editie

Sprekers

2024

Lezing geven

Programma Blog & Kennis

Ontdek

Blog

Whitepaper & e-books

Uitgelicht

6 Must-haves bij data governance

Interview: ‘Grote AI-dromen verwezenlijk je in kleine stapjes’

Contact Exposant worden?
10-11 september 2025 | Jaarbeurs Utrecht Exposant worden? Voor bezoekers

Voor bezoekers

Over deze editie

Recap 2024

New

Exposantenlijst

2024

Programma

2024

Sprekers

2024

Beursmagazine

2024

Partners

Praktische informatie

Plattegrond

Locatie & Openingstijden

Connect App

Hou mij op de hoogte

Ontvang de laatste informatie over Data Expo

Exposant worden

Exposant worden

Deelnemen aan de beurs

Exposant worden

Deelnamemogelijkheden

Partner worden

Lezing geven

Stand reserveren

Praktische informatie

Bezoekersprofiel

Contact de specialisten

Brochure aanvragen

Alle informatie over exposeren in één document.

Sprekers

Sprekers

Over deze editie

Sprekers

2024

Lezing geven

Programma Blog & Kennis

Blog & Kennis

Ontdek

Blog

Whitepaper & e-books

Uitgelicht

6 Must-haves bij data governance

Interview: ‘Grote AI-dromen verwezenlijk je in kleine stapjes’

Contact

Nederlands

Selecteer taal

English

Login exposanten

Big Data Expo Vorm F (1) Big Data Expo Vorm C (1)

Building portable ML use-cases in the public cloud

Woensdag 12:00 - 12:30
Lezingenzaal 8
Roy van Santen

Machine Learning Engineer (Xebia Data)

Linkedin Meer over deze spreker
In this session, we will talk about ASML’s journey of building portable data-driven use-cases that can be deployed close to customers’ EUV machines. The major use cases deal with predictive maintenance for ASML's newest EUV machines. These machines create a lot of revenue for ASML's customers, and downtime of these machines costs a lot of money. Being able to predict downtime of various parts within these machines allows customers to replace these parts during regular maintenance and increase overall uptime. ML has proven to be an effective technique to predict failures.
 
In order to run ML models effectively data scientists and machine learning engineers need access to state of the art infrastructure and tooling. We will focus on the journey of building ML infrastructure in a complex environment focussing on the requirements and walk through the process of selecting the right tools and technology for data professionals to be successful.
Akshay Verma

Data Engineer (ASML)

Linkedin Meer over deze spreker
In this session, we will talk about ASML’s journey of building portable data-driven use-cases that can be deployed close to customers’ EUV machines. The major use cases deal with predictive maintenance for ASML's newest EUV machines. These machines create a lot of revenue for ASML's customers, and downtime of these machines costs a lot of money. Being able to predict downtime of various parts within these machines allows customers to replace these parts during regular maintenance and increase overall uptime. ML has proven to be an effective technique to predict failures.
 
In order to run ML models effectively data scientists and machine learning engineers need access to state of the art infrastructure and tooling. We will focus on the journey of building ML infrastructure in a complex environment focussing on the requirements and walk through the process of selecting the right tools and technology for data professionals to be successful.
In this session, we will talk about ASML’s journey of building portable data-driven use-cases that can be deployed close to customers’ EUV machines. The major use cases deal with predictive maintenance for ASML's newest EUV machines. These machines create a lot of revenue for ASML's customers, and downtime of these machines costs a lot of money. Being able to predict downtime of various parts within these machines allows customers to replace these parts during regular maintenance and increase overall uptime. ML has proven to be an effective technique to predict failures.
 
In order to run ML models effectively data scientists and machine learning engineers need access to state of the art infrastructure and tooling. We will focus on the journey of building ML infrastructure in a complex environment focussing on the requirements and walk through the process of selecting the right tools and technology for data professionals to be successful.

Terug naar het overzicht

Geïnteresseerd in deze lezing?

Hou me op de hoogte