Zoeken...

Nederlands

English

Login exposanten

9-10 september 2026

Voor bezoekers

Over deze editie

Over Data Expo

Exposantenlijst

2025

Programma

2025

Sprekers

2025

Premium tickets

Beursmagazine 2025

Over vorige edities

Recap

2025

Praktische informatie

Plattegrond

2025

Locatie & Openingstijden

Data Expo Connect app

Samenwerkingen

Partners

Kennispartners

Klankbordgroep

Claim nu je gratis ticket

Kom naar Data Expo en maak jouw datadoelen waar.

Exposant worden

Deelnemen aan de beurs

Exposant worden

Deelnamemogelijkheden

Partner worden

Lezing geven

Testimonials

Praktische informatie

Bezoekersprofiel

Contact de specialisten

Brochure aanvragen

Alle informatie over exposeren in één document.

Programma

Over deze editie

Programma

Sprekers

Lezing geven

Testimonial sprekers

Exposantenlijst Blog & Kennis

Ontdek

Blog

Whitepaper & e-books

3-delige video serie

De Dataloog

Uitgelicht

Data & AI Monitor 2025

2025 markeert de start van een nieuwe fase in AI-adoptie.

Interview: "Waarom datagedreven werken vaak mislukt"

Louis de Roo | e-mergo

Interview: "In de beperking toont zich de meester"

Frans Feldberg | Vrije Universiteit Amsterdam

Contact Exposant worden?
9-10 september 2026 | Jaarbeurs Utrecht Exposant worden? Voor bezoekers

Voor bezoekers

Over deze editie

Over Data Expo

Exposantenlijst

2025

Programma

2025

Sprekers

2025

Premium tickets

Beursmagazine 2025

Over vorige edities

Recap

2025

Praktische informatie

Plattegrond

2025

Locatie & Openingstijden

Data Expo Connect app

Samenwerkingen

Partners

Kennispartners

Klankbordgroep

Claim nu je gratis ticket

Kom naar Data Expo en maak jouw datadoelen waar.

Exposant worden

Exposant worden

Deelnemen aan de beurs

Exposant worden

Deelnamemogelijkheden

Partner worden

Lezing geven

Testimonials

Praktische informatie

Bezoekersprofiel

Contact de specialisten

Brochure aanvragen

Alle informatie over exposeren in één document.

Programma

Programma

Over deze editie

Programma

Sprekers

Lezing geven

Testimonial sprekers

Exposantenlijst Blog & Kennis

Blog & Kennis

Ontdek

Blog

Whitepaper & e-books

3-delige video serie

De Dataloog

Uitgelicht

Data & AI Monitor 2025

2025 markeert de start van een nieuwe fase in AI-adoptie.

Interview: "Waarom datagedreven werken vaak mislukt"

Louis de Roo | e-mergo

Interview: "In de beperking toont zich de meester"

Frans Feldberg | Vrije Universiteit Amsterdam

Contact

Nederlands

Selecteer taal

English

Login exposanten

Exposant worden?
Big Data Expo Vorm F (1) Big Data Expo Vorm C (1)

From Trams to Terabytes HTM's Journey to a Smart Data-driven Future

Donderdag 16:00 - 16:30
Lezingenzaal 3
Danny Meringa

Data Analyst

Meer over deze spreker

During this presentation, we will unveil HTM's innovative digitalization project for their Avenio trams, equipped with advanced data boxes that provide essential measurement data in near real-time. This data is utilized by maintenance technicians through a specially developed app, enabling faster and more effective fault resolution.

We will delve into the technical specifications of the data boxes, focusing on how they collect and process vast amounts of operational data. The system generates real-time insights from numerous sensors and operational parameters, creating a comprehensive digital footprint of each trams performance.

A key future development includes the creation of an intelligent knowledge base, supported by a large language model, which will make our technical documentation more accessible and further optimize our workflows. Additionally, this year we're implementing enhanced logging methods and predictive maintenance capabilities, based on the collected measurement data. These adaptations aim to increase efficiency and minimize downtime by predicting and proactively addressing issues before they occur.

The data analytics pipeline processes information from multiple sources, including:

  • Real-time operational metrics
  • Sensor data from critical components
  • Historical maintenance records
  • Performance patterns and anomalies

This presentation provides a comprehensive view of how big data and smart technologies can transform urban public transport maintenance.

Marcel van Velzen

Senior Data Engineer

Meer over deze spreker

During this presentation, we will unveil HTM's innovative digitalization project for their Avenio trams, equipped with advanced data boxes that provide essential measurement data in near real-time. This data is utilized by maintenance technicians through a specially developed app, enabling faster and more effective fault resolution.

We will delve into the technical specifications of the data boxes, focusing on how they collect and process vast amounts of operational data. The system generates real-time insights from numerous sensors and operational parameters, creating a comprehensive digital footprint of each trams performance.

A key future development includes the creation of an intelligent knowledge base, supported by a large language model, which will make our technical documentation more accessible and further optimize our workflows. Additionally, this year we're implementing enhanced logging methods and predictive maintenance capabilities, based on the collected measurement data. These adaptations aim to increase efficiency and minimize downtime by predicting and proactively addressing issues before they occur.

The data analytics pipeline processes information from multiple sources, including:

  • Real-time operational metrics
  • Sensor data from critical components
  • Historical maintenance records
  • Performance patterns and anomalies

This presentation provides a comprehensive view of how big data and smart technologies can transform urban public transport maintenance.

Junior Marte Garcia

Senior Data Engineer

Meer over deze spreker

During this presentation, we will unveil HTM's innovative digitalization project for their Avenio trams, equipped with advanced data boxes that provide essential measurement data in near real-time. This data is utilized by maintenance technicians through a specially developed app, enabling faster and more effective fault resolution.

We will delve into the technical specifications of the data boxes, focusing on how they collect and process vast amounts of operational data. The system generates real-time insights from numerous sensors and operational parameters, creating a comprehensive digital footprint of each trams performance.

A key future development includes the creation of an intelligent knowledge base, supported by a large language model, which will make our technical documentation more accessible and further optimize our workflows. Additionally, this year we're implementing enhanced logging methods and predictive maintenance capabilities, based on the collected measurement data. These adaptations aim to increase efficiency and minimize downtime by predicting and proactively addressing issues before they occur.

The data analytics pipeline processes information from multiple sources, including:

  • Real-time operational metrics
  • Sensor data from critical components
  • Historical maintenance records
  • Performance patterns and anomalies

This presentation provides a comprehensive view of how big data and smart technologies can transform urban public transport maintenance.

During this presentation, we will unveil HTM's innovative digitalization project for their Avenio trams, equipped with advanced data boxes that provide essential measurement data in near real-time. This data is utilized by maintenance technicians through a specially developed app, enabling faster and more effective fault resolution.

We will delve into the technical specifications of the data boxes, focusing on how they collect and process vast amounts of operational data. The system generates real-time insights from numerous sensors and operational parameters, creating a comprehensive digital footprint of each trams performance.

A key future development includes the creation of an intelligent knowledge base, supported by a large language model, which will make our technical documentation more accessible and further optimize our workflows. Additionally, this year we're implementing enhanced logging methods and predictive maintenance capabilities, based on the collected measurement data. These adaptations aim to increase efficiency and minimize downtime by predicting and proactively addressing issues before they occur.

The data analytics pipeline processes information from multiple sources, including:

  • Real-time operational metrics
  • Sensor data from critical components
  • Historical maintenance records
  • Performance patterns and anomalies

This presentation provides a comprehensive view of how big data and smart technologies can transform urban public transport maintenance.

Terug naar het overzicht

Geïnteresseerd in deze lezing?

Meld je nu gratis aan voor Data Expo en beleef twee dagen vol inspiratie, praktijkinzichten en vernieuwende datatoepassingen. Ontdek wat data voor jóúw organisatie kan betekenen!
Free ticket